On the involvement of single-bond rotation in the primary photochemistry of photoactive yellow protein.
نویسندگان
چکیده
Prior experimental observations, as well as theoretical considerations, have led to the proposal that C(4)-C(7) single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid chromophore, (5-hydroxy indan-(1E)-ylidene)acetic acid, in which rotation across the C(4)-C(7) single bond has been locked with an ethane bridge, and we reconstituted the apo form of the wild-type protein and its R52A derivative with this chromophore analog. In PYP reconstituted with the rotation-locked chromophore, 1), absorption spectra of ground and intermediate states are slightly blue-shifted; 2), the quantum yield of photochemistry is ∼60% reduced; 3), the excited-state dynamics of the chromophore are accelerated; and 4), dynamics of the thermal recovery reaction of the protein are accelerated. A significant finding was that the yield of the transient ground-state intermediate in the early phase of the photocycle was considerably higher in the rotation-locked samples than in the corresponding samples reconstituted with p-coumaric acid. In contrast to theoretical predictions, the initial photocycle dynamics of PYP were observed to be not affected by the charge of the amino acid residue at position 52, which was varied by 1), varying the pH of the sample between 5 and 10; and 2), site-directed mutagenesis to construct R52A. These results imply that C(4)-C(7) single-bond rotation in PYP is not an alternative to C(7)=C(8) double-bond rotation, in case the nearby positive charge of R52 is absent, but rather facilitates, presumably with a compensatory movement, the physiological Z/E isomerization of the blue-light-absorbing chromophore.
منابع مشابه
Chemical reactivity and spectroscopy of the thiol ester-linked p-coumaric acid chromophore in the photoactive yellow protein from Ectothiorhodospira halophila.
We have recently identified p-coumaric acid as the chromophore of the photoactive yellow protein (PYP) from the purple sulfur bacterium Ectothiorhodospira halophila, a blue-light photoreceptor with rhodopsin-like photochemistry [Hoff, W. D., Düx, P., Hård, K., Nugteren-Roodzant, I. M., Crielaard, W., Boelens, R., Kaptein, R., Van Beeumen, J., & Hellingwerf, K. J. (1994) Biochemistry 33, 13959-1...
متن کاملInitial events in the photocycle of photoactive yellow protein.
The light-induced isomerization of a double bond is the key event that allows the conversion of light energy into a structural change in photoactive proteins for many light-mediated biological processes, such as vision, photosynthesis, photomorphogenesis, and photo movement. Cofactors such as retinals, linear tetrapyrroles, and 4-hydroxy-cinnamic acid have been selected by nature that provide t...
متن کاملHydrogen Bonding Controls Excited-State Decay of the Photoactive Yellow Protein Chromophore
We have performed excited-state dynamics simulations of a Photoactive Yellow Protein chromophore analogue in water. The results of the simulations demonstrate that in water the chromophore predominantly undergoes single-bond photoisomerization, rather than double-bond photoisomerization. Despite opposite charge distributions in the chromophore, excited-state decay takes place very efficiently f...
متن کاملTryptophan fluorescence as a reporter for structural changes in photoactive yellow protein elicited by photo-activation.
Light-activation of photoactive yellow protein (PYP) is followed by a series of dynamical transitions in the structure of the protein. Tryptophan fluorescence is well-suited as a tool to study selected aspects of these. Using site-directed mutagenesis eight 'single-tryptophan' mutants of PYP were made by replacement of either a tyrosine, phenylalanine or histidine residue by tryptophan, while s...
متن کاملFormation of an unusually short hydrogen bond in photoactive yellow protein.
The photoactive chromophore of photoactive yellow protein (PYP) is p-coumaric acid (pCA). In the ground state, the pCA chromophore exists as a phenolate anion, which is H-bonded by protonated Glu46 (O(Glu46)-O(pCA)=~2.6Å) and protonated Tyr42. On the other hand, the O(Glu46)-O(pCA) H-bond was unusually short (O(Glu46)-O(pCA)=2.47Å) in the intermediate pR(CW) state observed in time-resolved Laue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 101 5 شماره
صفحات -
تاریخ انتشار 2011